منابع مشابه
Characterization of $(delta, varepsilon)$-double derivation on rings and algebras
This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...
متن کاملOn Prime Near-Rings with Generalized Derivation
LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated deriva...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملsome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
let $r$ be a $*$-prime ring with center $z(r)$, $d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated automorphisms $sigma$ and $tau$ of $r$, such that $sigma$, $tau$ and $d$ commute with $'*'$. suppose that $u$ is an ideal of $r$ such that $u^*=u$, and $c_{sigma,tau}={cin r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper, it is shown that...
متن کاملThe Cohomology of Koszul-vinberg Algebras
This work is devoted to an intrinsic cohomology theory of Koszul-Vinberg algebras and their modules. Our results may be regarded as improvements of the attempt by Albert Nijenhuis in [NA]. The relationships between the cohomology theory developed here and some classical problems are pointed out, e.g. extensions of algebras and modules, and deformation theory. The real Koszul-Vinberg cohomology ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2017
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v37i3.31684